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Introduction

Aerodynamic flutter is the unstable oscillation of a 
body caused by the interaction of aerodynamic forces, 

structural elasticity and inertial effects.
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Introduction: Objective
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• To model a simple case of aerodynamic flutter through the use 
of discrete vortex method (DVM)

• Much faster than FEA approach

• Assumptions
• Inviscid flow (mimics highly turbulent flow)

• Impulsively-started flow



Inviscid Flow Theory: Complex Potential

• Neglect boundary layer (no viscosity)

• Potential flow
• Describe velocity field as a gradient of the velocity potential

V = ∇𝜙

• Complex potential
• Describe position of points with complex numbers

𝑧 = 𝑥 + 𝑖𝑦
𝑤 𝑧 = 𝜙 + 𝑖𝜓
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Inviscid Flow Theory: Complex Potential

• Elementary Flow Types

Uniform Source Vortex Doublet
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Inviscid Flow Theory: Complex Potential

• Superposition of elementary flow types
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𝑤 𝑧 = 𝑈 𝑧 +
𝑎2

𝑧
𝑤 𝑧 = 𝑈

𝑎2

𝑧
𝑤 𝑧 = 𝑈 𝑧



Inviscid Flow Theory: Conformal Mapping

• 2D potential flow can be transformed to another complex plane

𝑧 = 𝑥 + 𝑖𝑦, 𝑤 = 𝜙 + 𝑖𝜓

𝒇 𝒛 = 𝒘

𝒅𝒘

𝒅𝒛
= 𝒖 − 𝒊𝒗
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Source: wikipedia.org



Inviscid Flow Theory: Conformal Mapping
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z1-plane z2-plane z3-plane

z4-plane z5-plane z6-plane



Discrete Vortex Method

• Represent a continuously distributed vorticity with many 
elemental discrete line vortices 

• 1979: Sarpkaya modeled flow past a cylinder

𝑤 𝑧1 = 𝑈 𝑧1 +
𝑎2

𝑧1
−

𝑖

2𝜋


𝑗=1

𝑚

Γ𝑗 ln 𝑧1 − 𝑧1,𝑗 − ln 𝑧1 −
𝑎2

𝑧1,𝑗
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Source: Sarpkaya



Discrete Vortex Method

• Nascent vortices added to the flow field with each time step
• Release distance:

𝑧𝑛 =
1 +

Γ𝑛
2𝜋𝑈𝑠

1 −
Γ𝑛

2𝜋𝑈𝑠

𝑒𝑖 𝜋−𝜃𝑠

• Circulation strength:

Γ𝑛 =
1

2
𝑈𝑠
2 ∗ 𝑑𝑡

• All vortices are transported downstream
𝑧𝑡+𝑑𝑡 = 𝑧𝑡 + 𝑣 ∗ 𝑑𝑡

Introduction / Inviscid Flow Theory / Discrete Vortex Method / Dynamic Motion Equation / Methods / Results / Discussion / Conclusion



Dynamic Motion Equation

• Aerodynamic forces create a moment

𝐶𝑝 = 1 −
𝑉2

𝑈2

𝐹𝑥 𝑟 = 𝐶𝑝 𝑟 sin 𝜃 , 𝐹𝑦 𝑟 = 𝐶𝑝 𝑟 cos 𝜃

𝑀𝑧 = න
−2𝑎

2𝑎

(𝑥𝐹𝑦 − 𝑦𝐹𝑥) 𝑑𝑟
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Dynamic Motion Equation

• Flutter is simplified to torsion about its center

𝐼𝑧𝑧 ሷ𝜃 + 𝑏 ሶ𝜃 + 𝜅𝜃 = 𝑀𝑧 𝑡

• Second and first derivatives approximated by finite differencing

Central Difference Forward Difference

ሷ𝜃 ≅
𝜃𝑖+1 + 𝜃𝑖−1 − 2𝜃𝑖

Δ𝑡 2
, ሶ𝜃 ≅

𝜃𝑖+1 − 𝜃𝑖
Δ𝑡
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Methods
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• FreeBasic
• Compiled language

• Built-in graphics

• Very fast

• Free!



Methods
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• Input
• Flow properties

• Plate properties

• Display preferences

• Output
• Displays inviscid streamlines and positions of all vortices in z-planes

• Pressure and force distribution plots

• Deflection angle, drag force, and pressure probe data at each time step



Methods
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Results: Inviscid Flow
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Stationary Plate at varying Deflection Angles, z6-plane 

0ᵒ 30ᵒ 60ᵒ



Results: Inviscid Flow
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Stationary Plate at 0ᵒ, pressure distribution

Pressure Distribution



Results: Inviscid Flow
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Oscillating Plate, z-6 plane (left) and pressure distribution (right)



Discussion: Inviscid Flow
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• Net force = 0

• Highest force at 
stagnation points 
(Cp = 1)

• Negative force at 
regions of high 
velocity



Results: Discrete Vortices
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Stationary Plate at 0ᵒ, z6-plane

Speed x10



Discussion: Discrete Vortices
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• Von Kármán vortex street

• Total circulation = 0 (Kelvin Circulation Theorem)

Source: wikimedia.org



Results: Discrete Vortices
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Stationary Plate at 0ᵒ, z6-plane (left) and force distribution (right)

Speed x1



Results: Discrete Vortices
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Stationary Plate at 0ᵒ
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Results: Discrete Vortices
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Stationary Plate at 0ᵒ
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Results: Flutter
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Flutter simulation, z6-plane (left) and force distribution (right)

Speed x1



Results: Flutter
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Comparing different torsional stiffness values, less rigid (left) and more rigid(right) 

Speed x2



Results: Flutter
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Comparing different torsional rigidity values 
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Results: Flutter
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Comparing different torsional rigidity values 
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Discussion: Flutter
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• Second order differential equation (unstable)

• Higher torsional rigidity corresponds to smaller deflections and 
longer time until failure
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Conclusion
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• DVM provides an efficient method of simulating a simple case 
of aerodynamic flutter

• The results appear realistic and match the results of previous 
work and predictions



Conclusion: Further Work
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• Different approaches to singularities in inviscid flow
• Free surface theory

• Sarpkaya’s averaging technique

• Examine wake shape 

• Fast Fourier Transform on pressure probe data: 𝑆𝑡 = 𝑓(𝑅𝑒)

• Comparisons with experimental data

• Fatigue considerations

• Conformal mapping to other profiles
• Streamlined strut 

• Joukowski airfoil
• Thwaite’s Method to find separation points

Source: wolfram.com Source: wolfram.com
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