Be green, keep flying

USAIRE Student Awards 2020 – 4th laureates

AIAA Los Angeles, Celebrate Earth Day – 24/04/2021

Christine LIN, <u>lin.christine83@gmail.com</u> Chiu-Yüeh BLAISE, <u>chiuyueh.blaise@gmail.com</u>

The presentation

- 40 minutes presentation + 10 min Q&A
- Questions ? Don't hesitate to submit them

We will do our best for our English

Introduction

Who we are ?
What is the USAIRE Student Awards ?
Why did we choose to think about this topic ?

Introduction Who we are ?

<u>Ms. Christine LIN</u> Student, Mechanical Engineering Program University of Technology of Compiegne (UTC)

<u>*Mr. Chiu-Yüeh BLAISE*</u> Aeronautical Engineer with a double degree from the University of Compiegne (UTC) and Cranfield University

- Aviation enthusiast
- Several student societies
- French international air cadet
- Actual and future young professionals

Introduction What is the USAIRE Student Awards?

- An annual international competition
- Designed by USAIRE
- Since 2006
- Give students an opportunity to
 - Awake their spirit of innovation
 - Get closer from Aerospace and Defense stakeholders.

Introduction Why did we choose to think about this topic ?

New technologies 1.New propulsive energy 2.Aircraft structure improvements 3.Systems

- A decrease in :
 - Engine consumption,
 - Fuel consumption per passenger
- But
 - Less fuel in the world
 - An increasing flight demand

New propulsive energy needs to be found

	Indicator	Units	2017	% change since 2014	% change since 2005
	Passenger kilometres flown by commercial flights ⁽¹⁾	billion	1,643	+20%	+60%
-	Number of city pairs served most weeks by scheduled flights ⁽¹⁾		8,603	+11%	+43%
	Number of people inside L _{den} 55 dB noise contours ⁽²⁾	million	2.58	+14%	+12%
	Average noise energy per flight ⁽³⁾	10 ⁹ Joules	1.24	-1%	-14%
	Full-flight CO ₂ emissions ⁽¹⁾	million tonnes	163	+10%	+16%
	Full-flight 'net' $\rm CO_2$ emissions with ETS reductions ⁽¹⁾	million tonnes	136	+3%	n/a ⁽⁴⁾
ions	Full-flight NO _x emissions ⁽¹⁾	thousand tonnes	839	+12%	+25%
	Average fuel consumption of commercial flights ⁽¹⁾	litres fuel per 100 passenger kilometres	3.4	-8%	-24%

(1) All departures from EU28+EFTA(3) All departures and arrivals in EU28+EFTA

Traffi

Noise

Emiss

(2) 47 major European airports(4) ETS not applicable to aviation in 2005

Source : EASA, EEA, EUROCONTROL, European Aviation Environmental Report 2019

Source : LBST/BHL 2016

Source : Wikipedia Membrane Electrode Assembly

Liquid Hydrogen

Steam methane reforming $Ch_4 + H_2 0 \rightleftharpoons CO + 3H_2$

Source : https://www.thechemicalengineer.com/

Electrolysis

			Propulsive B				
	Jet A-1 fuel	Biofuel	Synthetic Electrofuel	Batterie	Nano Electrofuel	Liquid Hydrogen	
Energy Reference	E1	E2	E3	E4	E5	E6	
Energy density [MJ/kg]	46	Un- known	32	0.702	2	120	

- Each energy has to be used with a proper configuration
- Energy used to produce aircraft propulsive energy need to be renewable
- On going research !

New technologies Aircraft structure improvements

Box Wing

Source : NASA/ Lockheed

Blended Wing Body

Source : NASA

Fuel Burn	lower	Fuel Burn	27% lower
Takeoff Weight	lower	Takeoff Weight	5% lower
Operating Empty Weight	higher	Operating Empty Weight	12% lower
Total Thrust	NC	Total Thrust	27% lower
Lift/Drag	higher	Lift/Drag	20% higher

Source : AIAA-98-0438, Paul O Jemitola, John P Fielding (2012) Box wing aircraft conceptual design. In: 28th Congress of International Council of the Aeronautical Sciences, 2012, September 2012

New technologies Aircraft structure improvements

Box Wing

Source : NASA/ Lockheed

Open Rotor

LH2 High by pass ratio

Blended Wing Body

Source : NASA

Distributed propulsion

Ducted fan

New technologies Systems

Oled Technologies

Source : Journal of Marine Engineering & Technology, September 01, 2017; digitalconnectmag.com; Thomson Industries, Spike Aerospace; Safran Landing Systems

New technologies Systems

	Propulsive Energy Type											
	Jet A-1	Riafual	Synthetic	Pattorio	Nano	Liquid						
	fuel	Dioluei	Electrofuel	Dallerie	Electrofuel	Hydrogen						
Energy Reference	E1	E2	E3	E4	E5	E6						
Energy density [MJ/kg]	46	Un- known	32	0.702	2	120						

			En	ergy (c	f. Table	91)		Systems				
		E1	E2	E3	E4	E5	E6	EHA/EMA	OLED	E-taxi	Gabriel	
Refere	nces	E1	E2	E3	E4	E5	E6	S1	S2	\$3	S4	
Military	Unmanned	3	4	4	2	2	5	3	1	4	5	
winnary	Fighter	3	4	4	1	5	5	3	4	5	5	
	LR (HC)	3	4	4	1	1	5	3	5	2	5	
Commercial	LR (LC)	3	4	4	1	1	5	3	5	2	5	
Aircraft	SR (HC)	3	4	4	4	4	5	3	5	2	5	
	SR (LC)	3	4	4	5	5	5	3	5	2	5	
Cargo	LR	3	4	4	1	1	5	3	1	2	5	
Aircraft	SR	3	4	4	5	5	5	3	1	2	5	

		Aircraft Structure Improvements											
		Sha	pe		Propulsi	on	New technologies						
		BWB	PP	Open Potor	LH2 HBDD	Ducted	Golf Ball	Whale	Demon Project	Morphing			
Refere	A \$14	A \$12	A \$13		10113	ASIG	A \$17	A \$18	Asia				
Referen	Lines and	ASIT	ASIZ	A 313	A 314	A 313	A 310	ASIT	ASIO	A 313			
Military	Unmanned	5	5	2	5	2	5	5	5	5			
ivinited y	Fighter	4	4	2	5	2	5	5	5	5			
	LR (HC)	4	4	5	5	5	5	5	4	5			
Commercial	LR (LC)	4	4	5	5	5	5	5	4	5			
Aircraft	SR (HC)	4	4	5	5	5	5	5	4	5			
	SR (LC)	4	4	5	5	5	5	5	4	5			
Cargo	LR	5	4	5	5	5	5	5	4	5			
Aircraft	SR	5	4	5	5	5	5	5	4	5			

• 1: Totally not suitable; 2: Feasible but not recommended; 3: Already in use; 4: Suitable, need more clarification; 5: Totally suitable

Operational changes of new aircraft 1.Flight operations 2.Airport infrastructure changes 3.Maintenance and end of life

Operational changes of new aircraft Flight operations

New Operational procedures

- Commercial operational example
 - Short range aircraft
 - Low capacity

Source : FAA

Operational changes of new aircraft Flight operations

 20

 20

 Base

 Hydrogen

 Office

 Base

 Base

Source : Nasa

- New Operation of flight,
- Safety of operation

Operational changes of new aircraft Airport infrastructure changes

Source : Uniting Nation, Aug 29, 2018

Source : AgriLife extension

- Restoration of natural resources, passengers wellbeing
- Water saving, recycled water
- Airport configuration changes with aircraft of the future

Source : Nasa

Operational changes of new aircraft Maintenance and end of life

Source : Chris Red, Composites Forecasts and Consulting

Source : 1001crash.com, 2011

- 90% of the aircraft are valued during end of life
- The overall life cycle of an aircraft should be considered
- Process for Advanced Management of End-of-Life Aircraft (PAMELA)
 - Decommissioning
 - Disassembly
 - Smart and selective dismantling

Flying in the future, a human challenge
1.Immediate improvements, an economical motivation
2.Keep flying, social and political choices
3.Future of transportation

Flying in the future, a human challenge Immediate improvements, an economical motivation

- Flight road optimisation
- Electrification improvements
- Circular economy, 3R actions

Sustainability can drive benefits

Flying in the future, a human challenge Keep flying, social and political choices

- Sustainability :
 - a state of mind,
 - a way of life,
 - a political direction.

- Additional green increased price ticket
 - a factor of gender, flight range and gas reductions
- Working together
 - International Thermonuclear Experimental Reactor (ITER)
 - "Airbus of Batteries"

Flying in the future, a human challenge Future of transportation

Source : Embraer

Source : Hyperloop

Source : Flying Whales

Source : Boom

- Electrical Vertical Take-Off and Landing (e-VTOL)
- Hyperloop
 - speed : up to 760 miles per hour in a low pressure tube
- Airship
 - Heavy transportation capacity

10% of the CO2 emissions of a commercial aircraft

Conclusion

Stakeholders are involved to fight global warming.
 Propulsive Energy, a constraint.
 Political decisions, a game changer.
 A mix of energy until a final sustainable solution.

Be green, keep flying Conclusion

						Prev	isions						Application	
Transports		2030			2050			2065			2100			Den
	Trend	%	Social	Trend	%	Social	Trend	%	Social	Trend	%	Social	Freight	гах
Rail	\rightarrow	44,6	Average	\rightarrow	44,6	High Income	\downarrow	43,725	High Income	\uparrow	43,8	Low Income	Yes	Yes
High Speed Train	\rightarrow	5,15	Average	\uparrow	5,15	High Income	\rightarrow	4,6	High Income	\downarrow	4	Average	Yes	Yes
Hyperloop	1	0,1	High Income	Ť	1	High Income	↑	1,3	High Income	Ŷ	7,5	High Income	Yes	Yes
E-VTOL	1	0,05	High Income	1	0,20	High Income	1	0,28	High Income	1	5	Average	Yes	No
BWB	↑	0,1	Average	Ŷ	0,84	Average	↑	2,3	High Income	↑	8	Average	Yes	Yes
PP	↑	0	Average	↑	1	Average	↑	1,65	High Income	↑	4,5	Average	Yes	Yes
Conventional aircraft	\rightarrow	7	Average	\rightarrow	6,5	Average	\rightarrow	6,3	Average	\downarrow	5,5	High Income	Yes	Yes
Car	\downarrow	36,44	Average	\downarrow	34,5	Average	\rightarrow	34	Average	1	34,9	Average	No	Yes
Bus	\downarrow	4,7	Average	\downarrow	4,35	Average	\downarrow	4	Average	\uparrow	4,6	Average	No	Yes
Boat	\downarrow	1,9	Average	\downarrow	1,5	Average	\downarrow	1,35	Average	1	1,5	Average	Yes	Yes
Airship	↑	0,1	Average	Ť	0,3	Average	↑	0,42	Average	Ŷ	0,6	Low Income	Yes	Yes
Supersonic	\uparrow	0,01	High Income	\uparrow	0,06	High Income	1	0,075	High Income	\uparrow	0,1	High Income	No	Yes
Energy used			Oil, Gas, S	Synthetic	Electro	fuel, Electric	c, Hydrog	en		Hydr Nar	rogen, E 10-Elect	Electric, ro fuel		