

16th Annual AIAA Southern California Aerospace Systems and Technology (ASAT) Conference

Metal Additive Manufacturing Simulation – Printing It Right the First time

Hanson Chang MSC Software Corporation November 9, 2019

Agenda

Challenges to the Metal Additive Manufacturing (AM) Process

Pure Mechanical Simulation

Thermal and Thermo-Mechanical Simulation

What do you do with the mechanical and thermal analysis results?

Summary and Outlook

Additive Manufacturing - Powder Bed Fusion (PBF)

Several types of PBF printing techniques

- Selective Heat Sintering (SHS)
- Selective Laser Sintering (SLS)
- Electron Beam Melting (EBM)
- Selective Laser Melting (SLM)
- Direct Metal Laser Sintering (DMLS)

Focus of Today's Presentation

Metal Addtive Manufacturing Challenges

Major pain points

- Distortion
 - \rightarrow Part out of Tolerances
 - \rightarrow Collision with Powder Scraper

Residual Stresses

- → Part or Support Failure during Manufacturing
- Quality
 - → Defects, Porosity, Microstructure...

AM Simulation Methods

- Moving heat source on solid
- Transient fully thermo-mechanically metallurgical coupled
- Delivers thermal history and derived results like microstructure

- Element layer analyzed in one step or by hatching segments
- Thermal, mechanical or thermo-mechanically coupled
- Able to deliver approximate thermal history \checkmark

- Element layer (> powder layer) analyzed in one step
- Inherent Strains pure mechanically, extremely fast
- Delivers Distortion & Stress \checkmark

Length scale

Micro scale

Meso scale

Macro scale

Speed

Macroscopic Analysis

- Pure Mechanical Analysis

7

Macroscopic Mechanical Analysis

Scanner system Lase abrication Powder wder bed delivery system -Objekt being abricated Powder Laser beam scraper Movement of the laser heam Melt pool Layer of powder Solidified layer Powder delivery piston Fabrication piston

- Simple model: an AM layer shrinks due to cooling.
- This implies internal stress and/or distortion.
- The average induced strain per layer is called *inherent strain*.
- If the inherent strain is known it can be used as load in a *pure mechanical analysis.*

What are Inherent Strains?

Inherent Strains

- Originated from the welding industry
- Consists of
 - Plastic strains ϵ^{P}
 - Thermal strains ϵ^{τ}
 - Creep strains ε^c
 - Phase transformation strains ϵ^{tr}
- Reflects
 - Material used
 - Manufacturing parameters (Laser power, scanning speed, focus diameter, scanning direction, hatching pattern, layer thickness, etc.)
 - Machine used
- Inherent strains can be reverse engineered from test deflection results

The inherent strain
$$\epsilon^*$$
 consists of

$$\mathcal{E}^* = \mathcal{E}^p + \mathcal{E}^T + \mathcal{E}^c + \mathcal{E}^{tr}$$

Inherent Strains – Build Space Variability

- Many aspects of metal AM process result in variation across the build space
 - Gas flow
 - Multi laser calibration
 - Multi laser stitching/overlap
 - Edge/corner effects
 - Laser plume
 - Others

The calibration method needs to account for this variability

 Inherent strain calibrations need to be performed at multiple points on plate

2.10

1.50

0.000

Measured shielding gas flow velocity distribution*

*Schniedenharn, M.; Schleifenbaum, J.H.: On the Correlation of the Shielding Gas Flow in L-PBF Machines with Part Density, DDMC 2018, Berlin

Inherent Strains – Build Space Variability

Inherent strains vary across the build space

- Build calibration specimens across build space
- Cut and measure to calculate "inherent strain" for each X, Y region
- Spatially variable Inherent strains are saved and applied to part level simulation

Macroscopic mechanical analysis - Workflow

Analysis Worklow

- Test build test specimen, cut, measure deformation
- Calibrate reverse engineer inherent strains from test deflections
- Simulate activate element layers and apply inherent strains

Macroscopic Mechanical Analysis Results

Effective stress [MPa] 370.00 333.00 296.00 259.00 222.00 185.00 0 148.00 111.00 74.00 37.00 0.00 max: 370.04 min: 0.00 Simulated part – effective stress (von Mises)

- 0.8 mm voxels• 160k elements
 - 8 CPUs
 - 30 min

But what about temperatures?

Copyright 2019 MSC Software.

13

Microscopic thermal analysis

Macroscopic thermal analysis

Challenges of single heat flux cycle

- Ensure correct energy balance with discretized steps & high heating and cooling gradients.
- How much is the maximum heat flux?
- When is the maximum heat flux?
- How does the heat flux drop down?
 Solution
- Even more simplification!
- Two phases:
 - Primary energy application → Melting
 - Secondary energy application → Heating
- Constant heat flux per phase
- Easy to determine times → derive heat flux to keep energy balance

Macroscopic thermal analysis

Primary heat flux application – melting

Secondary heat flux application – dissipation from top to bottom

• 0.8 mm voxels 160k elements • 16 CPUs

Macroscopic thermo-mechanical coupled analysis

- Once thermal simulation is available, the mechanical coupling is straightforward.
- A calibration of the peak temperature is recommended. (via efficiency & melting energy fraction)
- A calibration of the distortion is recommended. (via an expansion/shrinkage scale factor)

- Measured z-displacement of cantilever specimen at front tip was 2.51 mm.
- Calibrated shrinkage factor leads to same z-displacement.
- z = 11.509 mm, h = 9 mm →

 $\Delta z = z - h = 2.509 \text{ mm}$

Macroscopic thermo-mechanical coupled analysis

Optical measurement – surface deviation

Macroscopic thermo-mechanical coupled analysis

Effective Stress (von Mises)

Observations

- T-M analysis can deliver very similar results compared to the proven mechanical analysis.
- Deformation matches very well with mechanical analysis & measurement.
- Stresses show a qualitatively good match in terms of level and distribution.

What do you do with the AM mechanical and thermal analysis results?

What do you do with mechanical and thermal analysis results?

- Distorsion results redesign to compensate for the distortion
- Residual stress results identify possible areas of breakage
- Thermo-mechanical results identify hot spots and possible recoater blade contact issue
- Parametric studies help you dial in the optimal set of printing parameters

Automatic Distortion Compensation

- A negative sign is applied to the deformed shape and is used as input to the next iteration
- This process is repeated until the final shape is within the specified distortion from the orginal design

Residual Stress Evaluation

- Identify possible part or support failure
 - Based on material ultimate strain

Recoater Contact Issue

- The thermo-mechanical simulation identifies thermal overload which casues the part to grow out of the powder layer and interacts with the recoater
- The Recoater Contact plot shows you the probability of collision between the recoater and part

Parametric Studies

- Parametric studies help you dial in the optimal set of printing parameters before you ever physically print the part!
- Mechanical Study: Different part orientations and support systems followed by different cutting sequences and heat treatment (see image below)
- Thermal and Thermo-Mechanical study: Different base plate temperature, laser power, laser speed, hatching distance, etc.

Summary & Outlook

- Simfact Additive from MSC can perform mechanical, thermal and thermo-mechanical metal AM simulations
- Mechanical analysis delivers fast predictions for distortion and residual stress
- Thermal analysis predicts the global temperature distribution & simplified thermal history in reasonable time
- Thermo-mechanical coupled analysis predicts global temperature distribution, distortion & residual stress in reasonable time
- Under R&D use microscopic analysis to predict material and microstructure properties
 - Phase distribution
 - Yield strength
 - Ultimate strength
 - Hardness

16th Annual AIAA Southern California Aerospace Systems and Technology (ASAT) Conference

Thank you!