QUASI-ONE DIMENSIONAL FLOW THROUGH A NOZZLE WITH A SHOCK

16th Annual AIAA Southern California Aerospace Systems and Technology (ASAT) Conference

November 9th, 2019

Presenter: Isaiah C. Navarro

University of California, Irvine

Graduate Advisor: Dr. William Sirignano

Masters Thesis

Mechanical and Aerospace Engineering, Fluid Mechanics

Wanted something related to rocket engines

INTRODUCTION

 Van der Waal's Equation of State (EoS) 1873

$$P = \frac{RT}{v-b} - \frac{a}{v^2} \qquad 1 = \frac{P}{\rho RT}$$

Redlich-Kwong (1949)

$$P = \frac{RT}{v-b} - \frac{a/T^{0.5}}{v(v+b)}$$

Compressibility Factor - Z

$$Z = \frac{P}{\rho RT}$$

Soave-Redlich-Kwong (1971)

$$P = \frac{RT}{v-b} - \frac{a(T)}{v(v+b)}$$

WHY USE SOAVE-REDLICH-KWONG

Mainly Algebraic

Minimal Information Needed Specific Heat Capacity Critical Pressure Critical Temperature Acentric Factor Molecular Weight

Addresses temperature and pressure variation

Addresses difference of species

PREVIOUS WORKS

- Johannes Diderik van der Waals (1873)
 - Equation everyone knows
- Redlich-Kwong (1949)
 - Shell Development Company
 - Identified new way of approaching temperature dependency
- Soave (1971)
 - Modified Redlich-Kwong
 - Equations used in this study
- Peng Robinson (1976)
 - Another EoS, often compared to Soave-Redlich-Kwong

- Various Works
 - Improvement of binary interaction coefficients
- Huron and Vidal (1979)
 - Defined new mixing rules for gases with multiple species
- Sirignano (2018)
 - Approximate Solution

APPLICATIONS

- Originally developed by Shell company for fracking
- Vapor Equilibrium Studies
- Boilers Design
- Power Cycles
- Wind Tunnel Predictions

- Turbomachinery
- Working Fluids
- Hydraulics
- Shock Waves
- Compressible Flow
- Nozzle Design

SCOPE

Range of properties

Pressure: 10, 30, 50, 100, 200, 500 bar Temperature: 500, 1000, 2000, 4000 K

Investigating value mores associated with rocket nozzle flow

Some temperature dependent terms not modeled

Eg.

Specifc heat capacitiesBinary interaction coefficients

Need to solve cubic EoS

$$Z = \frac{P}{\rho RT}$$

$$Z^{3} - Z^{2} + (A - B - B^{2})Z - AB = 0$$

- Roots function takes a lot of computational time
- Used Cardano's Method for direct and more efficient calculations

- Normalized pressure and temperature by stagnation values $P = \frac{T_d}{T_0}$
- Find A and B

$$\hat{a} = \frac{aP_0}{(R_u T_d)^2} = \sum_{i=1}^N \sum_{j=1}^N \sqrt{\hat{a}_i \hat{a}_j} (1 - k_{ij}) X_i X_j \longrightarrow \hat{a}_i = \frac{aP_d}{(R_u T_d)^2} = 0.42748 \frac{T_{ci}^2}{P_{ci}} [1 + S_i (1 - \sqrt{\frac{T}{T_{ci}}})]^2 \longrightarrow P_{ci} = \frac{P_{ci,d}}{P_0}$$

$$A = \frac{aP_d}{(R_u T_d)^2} = \frac{\hat{a}P}{T^2}$$

$$S_i = 0.48508 + 1.5517\omega_i - 0.15613\omega_i^2$$

$$B = \frac{bP_d}{R_u T_d} = \frac{\hat{b}P}{T} \qquad \qquad \hat{b} = \frac{bP_0}{R_u T_0} = \sum_{i=1}^N X_i \hat{b_i} \qquad \qquad \hat{b_i} = \frac{b_i P_0}{R_u T_0} = 0.08664 \frac{T_{ci}}{P_{ci}}$$

- Now use Cardano's Method
- Solve for Normalized density

$$Z^{3} - Z^{2} + (A - B - B^{2})Z - AB = 0$$

$$Z = \frac{P}{T\mathscr{R}} \quad \mathscr{R} = \frac{\rho R_u T}{P}$$

 $T = \frac{T_d}{T_0}$

 $T_{ci} = \frac{T_{ci,d}}{T_{ci,d}}$

Choose to vary Pressure

$$\frac{dT}{T} = \beta \frac{d\rho}{\rho} + \frac{1}{c_v + k} ds$$
$$\frac{dP}{P} = (f + g\beta) \frac{d\rho}{\rho} + \frac{1}{c_v + k} ds$$
$$f = \frac{2Z^3 - Z^2 + AB}{Z^3 - B^2 Z}$$

$$g = \frac{1}{Z-B} - \frac{A'}{Z(Z+B)}$$

$$\beta = \frac{(\gamma - 1)Zg}{1 + \frac{k}{c_v}}$$
$$\frac{k}{c_v} = (\gamma - 1)\frac{A''}{B}ln\left(\frac{Z + B}{Z}\right)$$

$$\frac{dU^2}{dP} = -\frac{2}{\mathscr{R}}$$

$$C = \sqrt{TZ(f + g\beta)}$$

$$\frac{d\alpha}{dP} = -\alpha \left[\frac{1}{P(f+g\beta)} - \frac{1}{\mathscr{R}U^2}\right]$$

$$A' = \frac{dA}{dT} = T\frac{d\hat{a}}{dT} = \sum_{i=1}^{N} \sum_{j=1}^{N} \frac{1-k_{ij}}{2} X_i X_j T\left[\sqrt{\frac{\hat{a}_i}{\hat{a}_j}}\frac{d\hat{a}_j}{dT} + \sqrt{\frac{\hat{a}_j}{\hat{a}_i}}\frac{d\hat{a}_i}{dT}\right]$$

$$A'' = \frac{d^2 A}{dT^2} = T^2 \frac{d^2 \hat{a}}{dT^2} = \sum_{i=1}^N \sum_{j=1}^N \frac{1 - k_{ij}}{2} T^2 X_i X_j \left[\sqrt{\frac{\hat{a}_i}{\hat{a}_j}} \frac{d^2 \hat{a}_j}{dT^2} + \frac{1}{\hat{a}_i \hat{a}_j} \frac{d \hat{a}_i}{dT} \frac{d \hat{a}_j}{dT} - \frac{1}{2} \frac{\hat{a}_i^{0.5}}{\hat{a}_j^{1.5}} \frac{d \hat{a}_j^2}{dT^2} + \sqrt{\frac{\hat{a}_j}{\hat{a}_i}} \frac{d^2 \hat{a}_j}{dT^2} - \frac{1}{2} \frac{\hat{a}_j^{0.5}}{\hat{a}_i^{1.5}} \frac{d^2 \hat{a}_j}{dT^2} \right]$$

$$\frac{d\hat{a}_i}{dT} = 0.42748 \frac{T_{ci}^{1.5}}{P_{ci}T^{0.5}} S_i \left[1 + S_i (1 - \sqrt{\frac{T}{T_{ci}}}) \right]$$

$$\frac{d^2 \hat{a_i}}{dT^2} = -\frac{0.21374}{P_{ci}} \left(\frac{T_{ci}}{T}\right)^{1.5} S_i (1+S_i)$$

NORMAL SHOCK

- Five properties needed for full understanding of normal shock:
 - Pressure
 - Temperature
 - Velocity
 - Density
 - Enthalpy
- Two methods for normal shock calculation:
 - First upstream velocity not needed
 - Second upstream velocity needed

NORMAL SHOCK – METHOD ONE

- Ten total properties
- 4 Known
 - T1, P1, Z1, h1
- 6 Unknown
 - T2, P1, Z2, h2, U1, U2
- 5 Equations

$$\rho_1 u_1^2 + P_1 = \rho_2 u_2^2 + P_2$$

 $\rho_1 u_1 = \rho_2 u_2$

$$h_1 + \frac{u_1^2}{2} = h_2 + \frac{u_2^2}{2}$$

$$h = h_{ideal} + \frac{1}{MW} \left[R_u T(Z-1) + \frac{T \frac{da}{dT} - a}{b} ln \frac{Z+B}{Z} \right]$$
$$h_{ideal} = C_p T$$

$$Z^{3} - Z^{2} + (A - B - B^{2})Z - AB = 0$$

NORMAL SHOCK – METHOD ONE

- Choose Temperature Ratio: T2
- Guess a Pressure Ratio: P2
 - Use Cardano's Method to solve for compressibility: Z2
 - Solve for density: ρ2
 - Manipulate momentum and continuity to solve for velocity: u1
 - Use continuity to get velocity: u2
 - Using literature defined equation solve for enthalpy:h1
 - Check solution using Total Enthalpy
- If total enthalpy's math T2, P2 combination matches

 $\rho_1 u_1^2 + P_1 = \rho_2 u_2^2 + P_2$

 $\rho_1 u_1 = \rho_2 u_2$

$$h_1 + \frac{u_1^2}{2} = h_2 + \frac{u_2^2}{2}$$
$$Z^3 - Z^2 + (A - B - B^2)Z - AB = 0$$

$$h = h_{ideal} + \frac{1}{MW} \left[R_u T(Z-1) + \frac{T\frac{da}{dT} - a}{b} ln \frac{Z+B}{Z} \right]$$
$$h_{ideal} = C_p T$$

NORMAL SHOCK – METHOD TWO

This time upstream velocity is kno

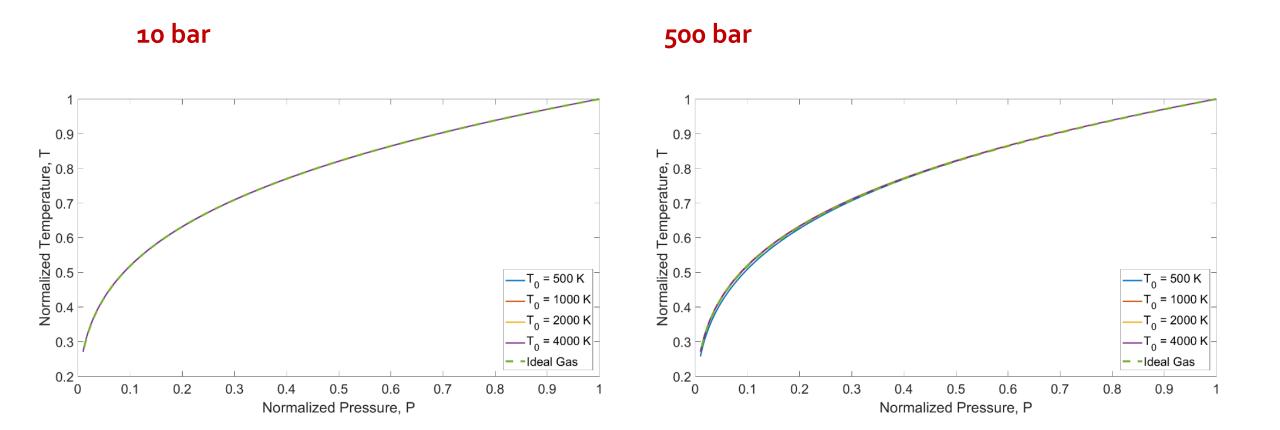
Guess Tr:

Ignore upstream velocity for now Go through Method One Now have all upstream and downstream conditions Compare U1 found via Method One to U1 defined by upstream conditions

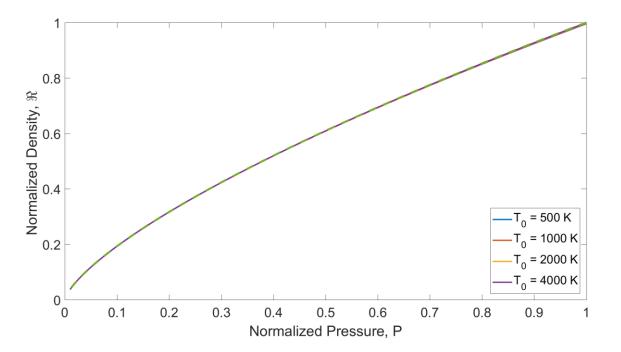
RESULTS COMPUTATIONAL COST

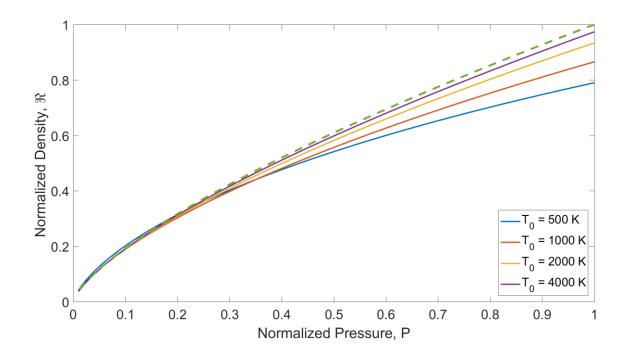
- Use Normalized Values
- Had computer run through all of calculations 52 times

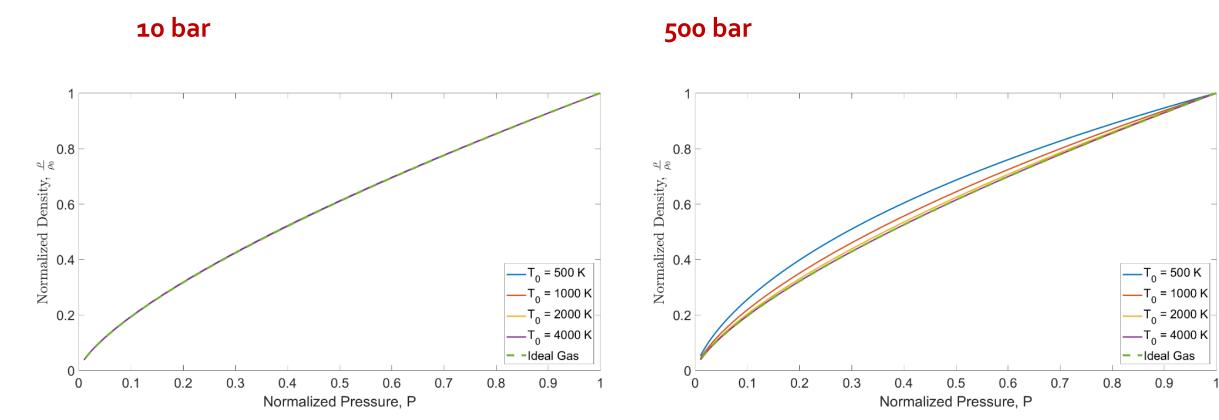
	Root Function	Approximate Solution
Computational Cost	2.0454	0.0327



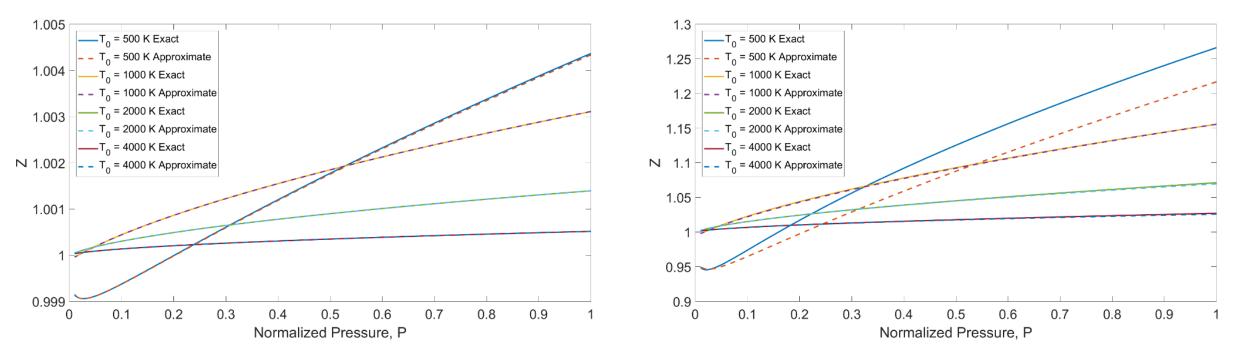
10 bar



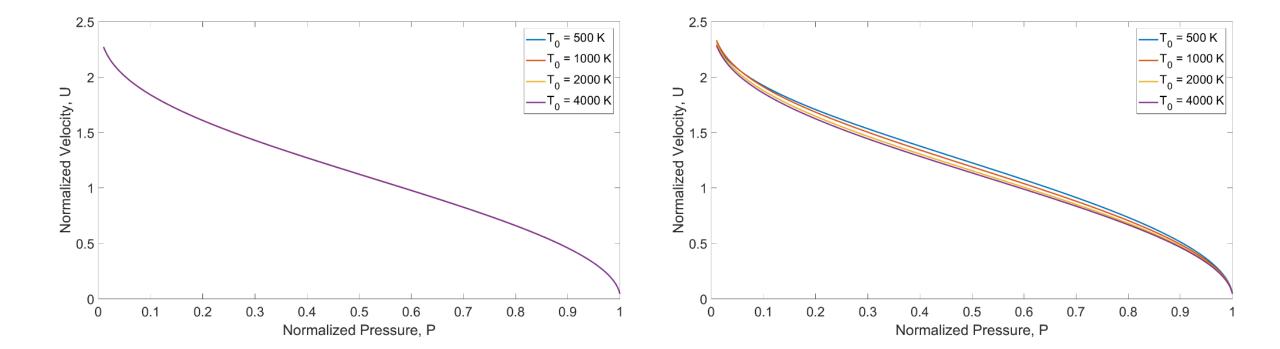


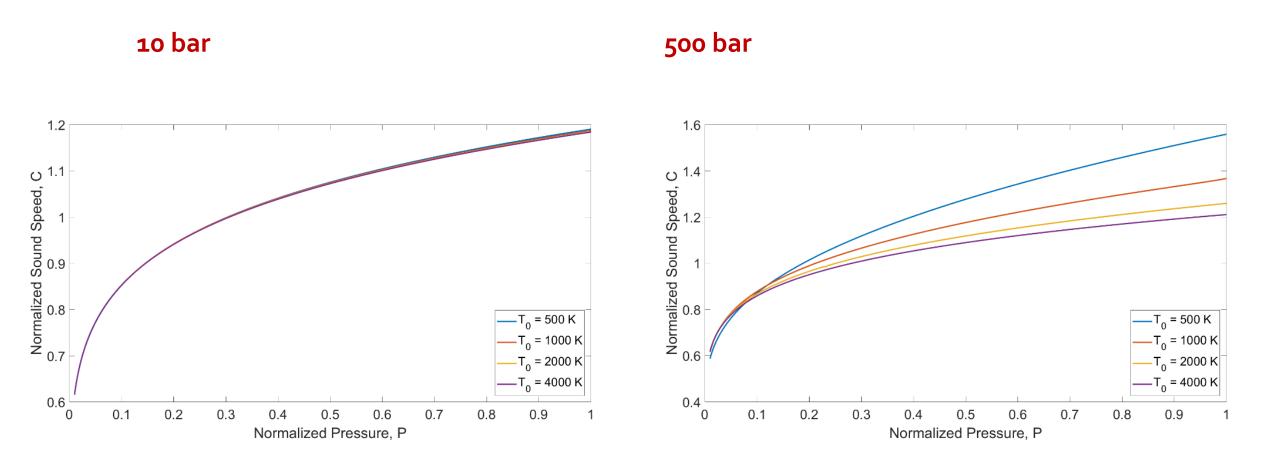


10 bar

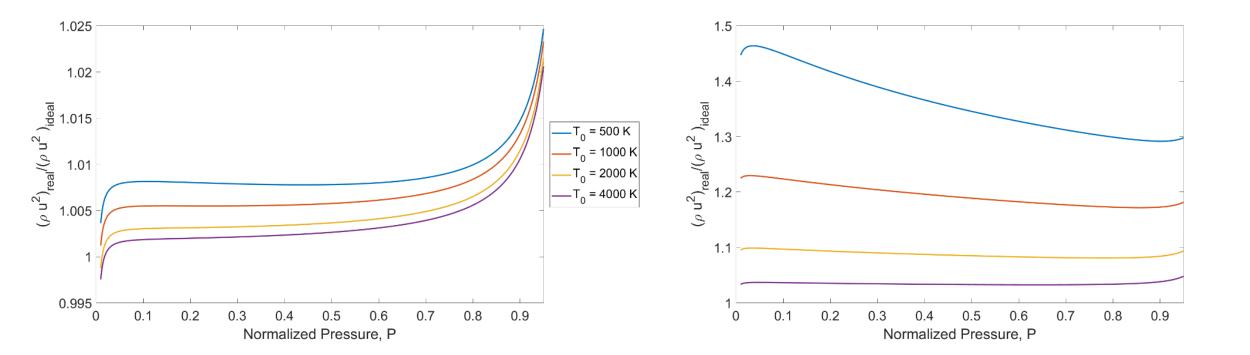


10 bar

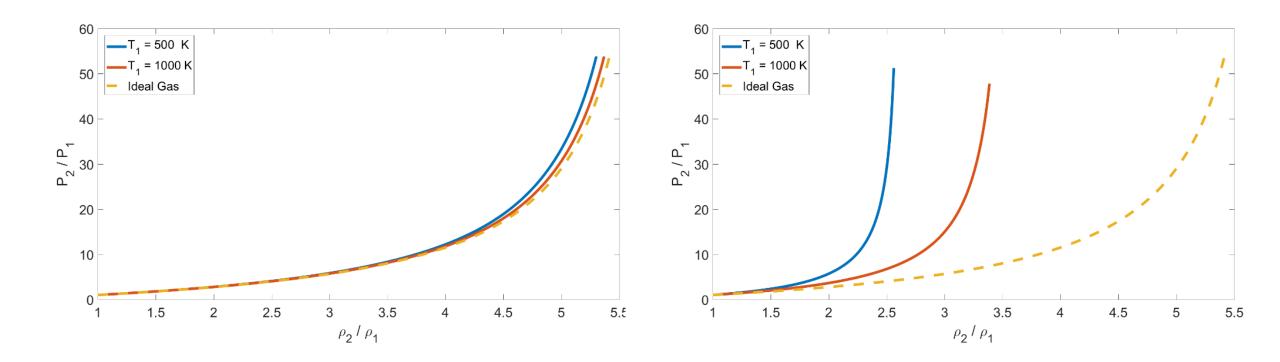


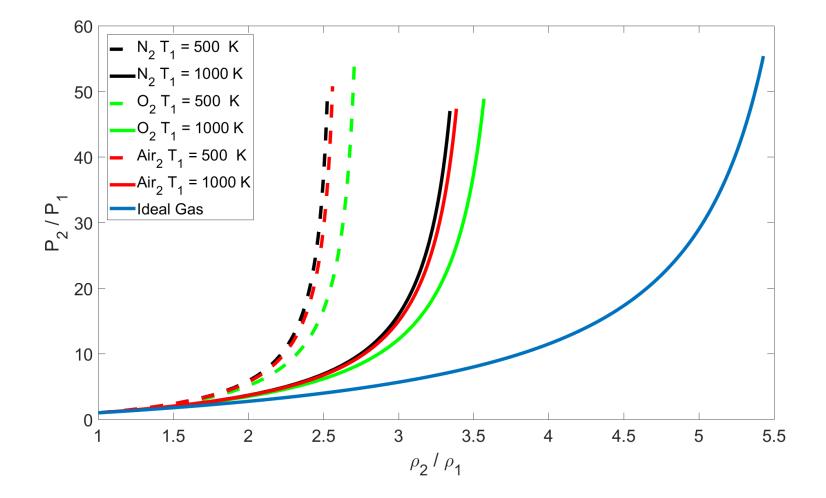


10 bar

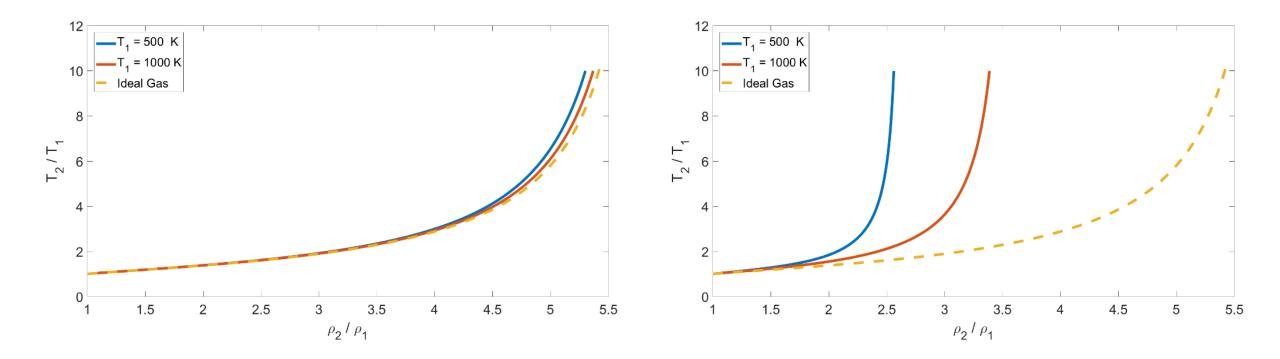


10 bar

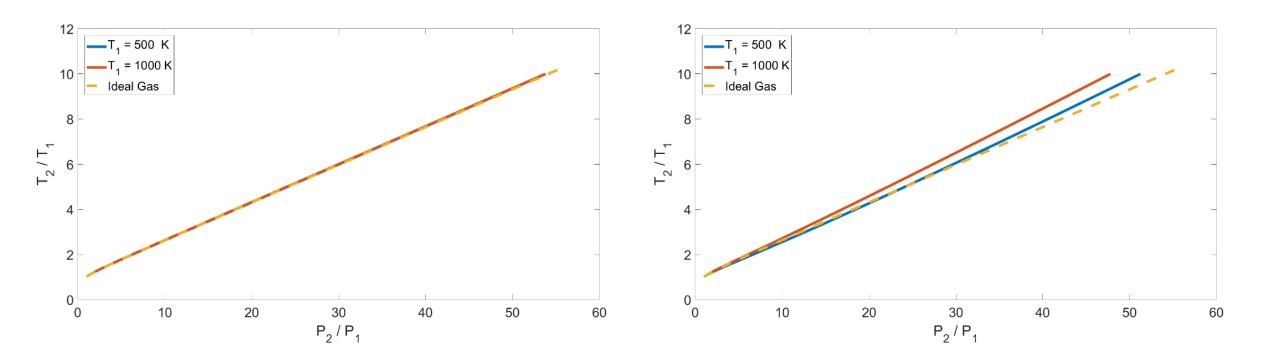


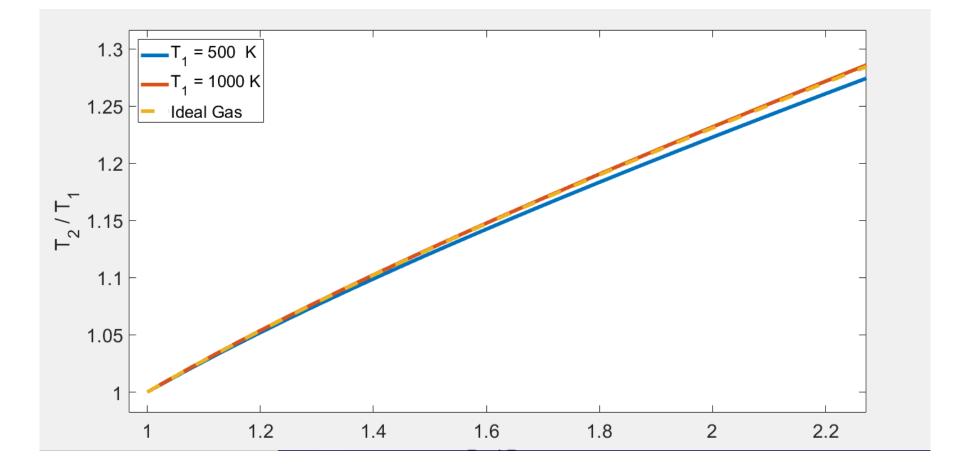


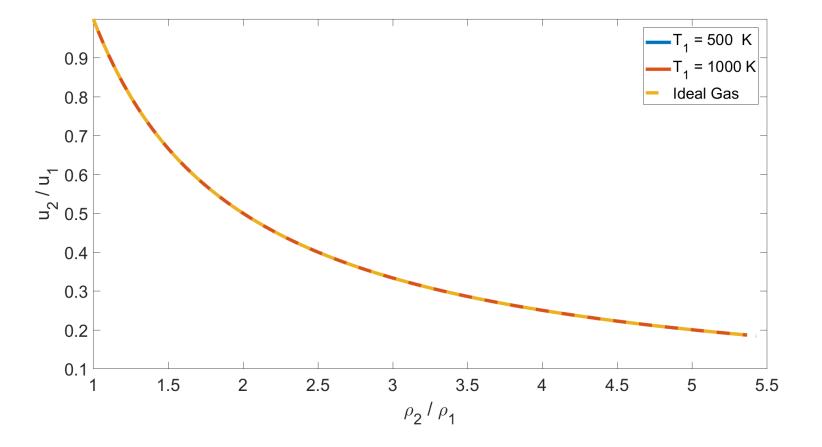
10 bar



10 bar







RESULT SUMMARY – MAX DEVIATION

Temperature – 4.25% Density – 28.19% Mass Flux – 3.25%

Recap:

Used Soave-Redlich-Kwong EoS Defined method for solving cubic equation directly Defined method for calculating isentropic flow Defined method for finding normal shock

Showed Results

Future Studies:

Focus on higher pressures and temperatures

Explore more values for binary interaction coefficient

Introduce more temperature dependent terms

CLOSING REMARKS

THANKYOU

QUESTIONS