

Hydrogen for Aviation

A Webinar Hosted by AIAA Northeast Region December 15, 2020

Dr. Bruce J. Holmes D.E., FAIAA, FRAeS, Comm, Instr, AMEL, ASEL, ASES, CFI, AIGI, CE-525, Remote Pilot, FAA Master Pilot

> Chief Technology Officer Alakai Technologies Corporation

Recycle – Reuse Brown, Grey, Blue and Green H2

What is SKAI?

Skai is an advanced air mobility (AAM) system built with a relentless focus on simplicity- the first hydrogen fuel-cell powered electric vertical take off and landing vehicle.

Skai is comprised of multiple patent protected vertical take off and landing vehicles, air mobility services, and innovations in fuel source/propulsion systems. Its unique brand position and market entry strategy enable faster revenue generation and long-term sector leadership.

Overall Competitive Picture & LH2 Advantage

Weight Fraction Trends Among Different Aircraft Types

⁽c) 2020 Alakai Technologies Corporation. All Rights Reserved.

Green Hybrid Stations

- Onsite LH2 Generation
- LH2 for Skai

REFUELIN

- GH2 for cars & trucks
- Electric vehicle charging

Green H2 Ecosystem (H2 at Airports)

skai

A Sustainability View

Why Batteries?

Why Hydrogen?

Image Credit: NASA

Pre-Electric

Neo-Electric

Image Credit: National Geographic

Image Credit: Lilium

Colors of Hydrogen

• Green Hydrogen - Made through electrolysis from renewable electricity

• Blue Hydrogen - Steam reforming of natural gas with CO2 capture.

• Gray Hydrogen – Steam reforming of natural gas feedstock.

• Black Hydrogen - Steam reforming of coal feedstock.

As solar PV prices have fallen 90% since 2009 and wind turbine prices by ~60% since 2010 the economics of Green hydrogen continue to advance. Decreasing Carbon Footprint

Hydrogen Lifecycle and Benefits

Fueled by Hydrogen, Powered by Simplicity

Kal

Sł

(c) 2020 Alakai Technologies Corporation. All Rights Reserved.

When System Efficiency May Not Be <u>The</u> Priority

LH2 HFC powertrain system losses come from (After losses for H2 production, transport, storage, and liquefaction):

- Rotor Blades = 22-28% f (induced loss)
- Fuel Cells = 40 to 50% loss (Heat, Water)
- Fuel Cell Support Equipment (BoP) = 10% loss
- Cooling Systems = 5% loss
- Downwash from rotors on airframe = 7% loss
- Aerodynamics = f (viscid & inviscid losses)
- Geared Motors = 5-10% loss
- And others ...

Law of Abundances and Scarcities:

"As a scarcity becomes an abundancy,

consume (waste if necessary) that which is in abundance, to solve human needs."

(c) 2020 Alakai Technologies Corporation. All Rights Reserved.

Technology Readiness Levels (TRL)

Aeronautical Industry Pre-Competitive Collaboration needed to accelerate pace and to share the risks of TRL advancement.

Hydrogen Coming Of Age

- Ten nations have committed to advancement toward hydrogen economies over the coming years.
- Primary drivers are environmental sustainability and Total Cost of Ownership (TCO).
- Aeronautical H2 ecosystem includes OEMs and suppliers across the enterprise.

Aerospace giant Airbus has unveiled plans for what it hailed as the first commercial zero-emission aircraft.

Hydrogen Technology Trajectories

- The cost to produce hydrogen fuel cells has fallen 65% since 2010 and is projected to fall another 50% by 2025, as volume scales (<u>https://blog.ballard.com/fuel-cell-price-drop</u>), bringing the cost down from more than \$1,000/kW a few years ago (\$100,000 per car) to about \$60/kW (about \$6,000 per car) and with a DOE goal of \$30/kW in coming years.
- This year, Microsoft has pledged to become carbon negative by 2030, in part using HFCs to power Azure datacenter servers, in a cost-competitive replacement of diesel fuel powered generators, with H2 delivered by H2-powered long-haul vehicles, to ensure five-nines (99.999%) reliability. (<u>https://news.microsoft.com/innovation-stories/hydrogen-datacenters/</u>)
- Hydrogen production costs are forecast to decline by 50% by 2030, making H2costcompetitive with some conventional fuels (<u>https://hydrogencouncil.com/en/path-tohydrogen-competitiveness-a-cost-perspective/</u>)
- Before the impact of any technological breakthroughs are considered, the Total Cost of Ownership of hydrogen vehicles is forecast to decline about 45%, at about 600,000 vehicles per year (<u>https://hydrogencouncil.com/wp-content/uploads/2020/01/Path-to-Hydrogen-Competitiveness_Full-Study-1.pdf</u>)

Change the World

Hydrogen Powered Aerial Transport Solutions

Everyday Air Mobility. Fueled by Hydrogen. Powered by Simplicity.

skai

Thank You!

Backup