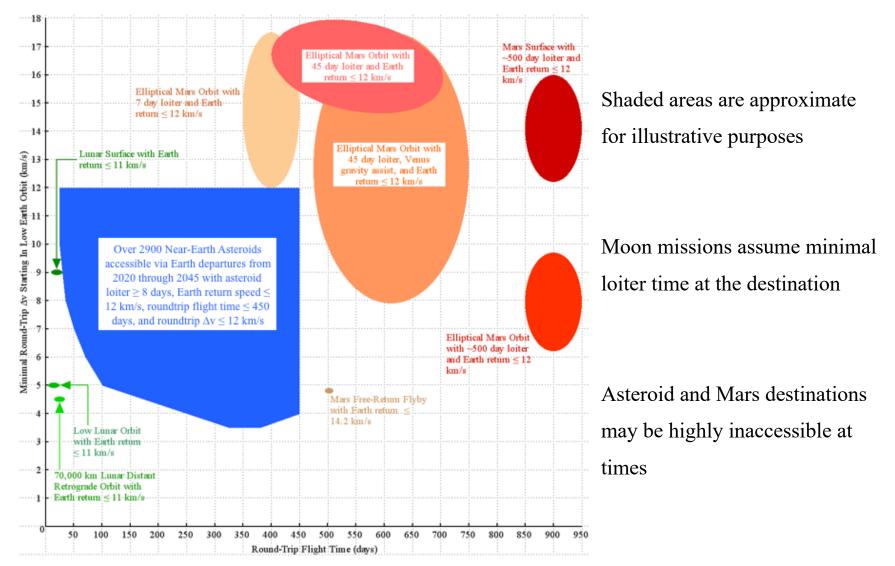

Aquarius, A Reusable Water-Based Interplanetary Human Spaceflight Transport


AIAA-Los Angeles-Las Vegas Section 26 September 2020

Objectives

- Review major challenges to interplanetary human spaceflight (iHSF)
- Suggest strategies to address these challenges, rendering iHSF routine & sustainable
 - What knowledge gaps enable these strategies and how do they modify milestones on your favorite iHSF "technology roadmap"?
 - Water is the critical multi-use consumable enabling routine iHSF
 - Selenocentric distant retrograde orbits (SDROs) are the closest stable orbits to Earth from which multiple iHSF departures may be made without undue propulsive penalties
- Apply strategies to the hypothetical iHSF transport Aquarius, illustrating viability
 - Fly real transits between Earth and Mars orbit to demonstrate closed performance
 - Pick performance-challenged mission opportunities (do <u>not</u> fully optimize associated mission designs) to avoid one-off and unsustainable capabilities

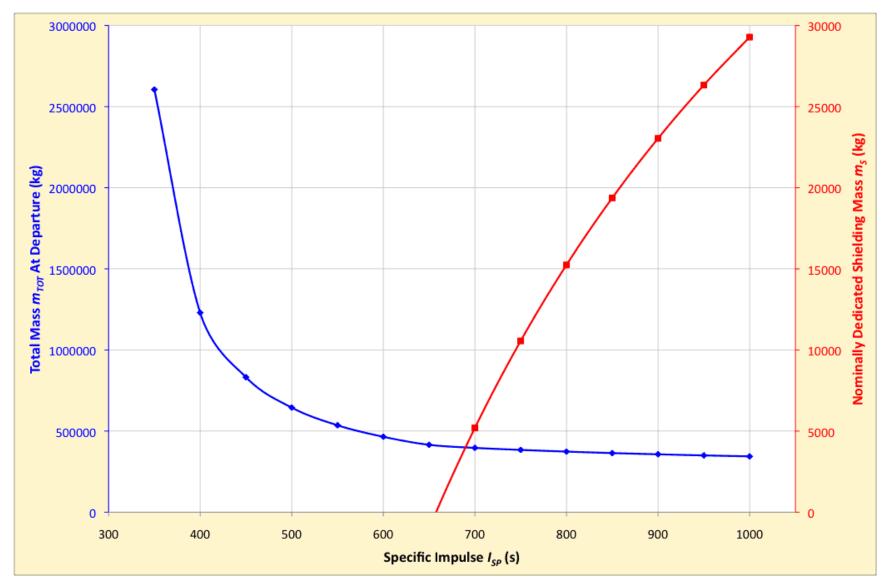
Technical details supporting this presentation are published in a paper¹ co-authored by Space Enterprise Institute/James S. Logan, M.D.

¹ The paper is published in *Acta Astronautica* Vol. 128 (2016) pp. 160-179. Reference http://www.sciencedirect.com/science/article/pii/S0094576516300868 (accessed 19 September 2020).

Near-Term iHSF Destinations Challenge Current Technology

Reference https://www.lpi.usra.edu/sbag/science/NHATS_Accessible_NEAs_Summary.png (accessed 19 September 2020)

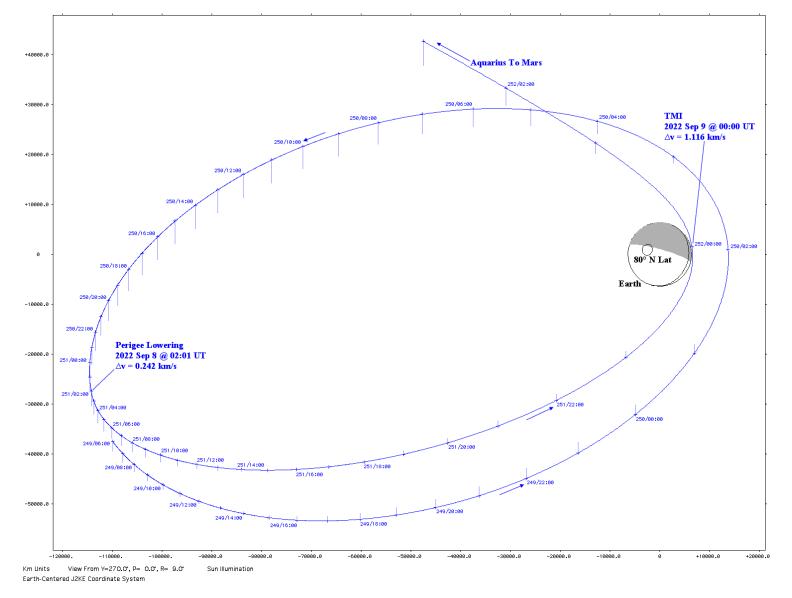
iHSF Challenge	Aquarius Mitigating Strategy			
Excessive transit time	Reduce via trajectory design within propulsion capabilities and			
	assume pre-emplaced Earth return consumables at destination via			
	robotic transport or ISRU			
Crew confinement	House crew of 3 in Hab module with 203 m ³ volume			
Crew radiation exposure	Shield Hab with 14.5 g/cm ² structure, plus > 37.0 g/cm ² water, to			
	provide > 5% of Earth's atmosphere at sea level (RP5) & assume			
	RP100 in destination sub-surface habitat			
Crew micro-gravity exposure	Provide crew with a 3-m short-arm centrifuge in			
	docking/airlock/centrifuge module (DAC)			
Closed-loop life support	Run open-loop, venting/dumping overboard			
Excessive crew acceleration	Abandon direct crew atmospheric entry in favor of lower speed			
during Earth return	return from Aquarius "garage" in SDRO			
Propulsive efficiency	Heat water $> 3000^{\circ}$ C, disassociating it into H and O atoms to			
	achieve $I_{SP} = 900$ s, and nominally deplete Hab shielding water			
	below RP5 only during destination arrival			

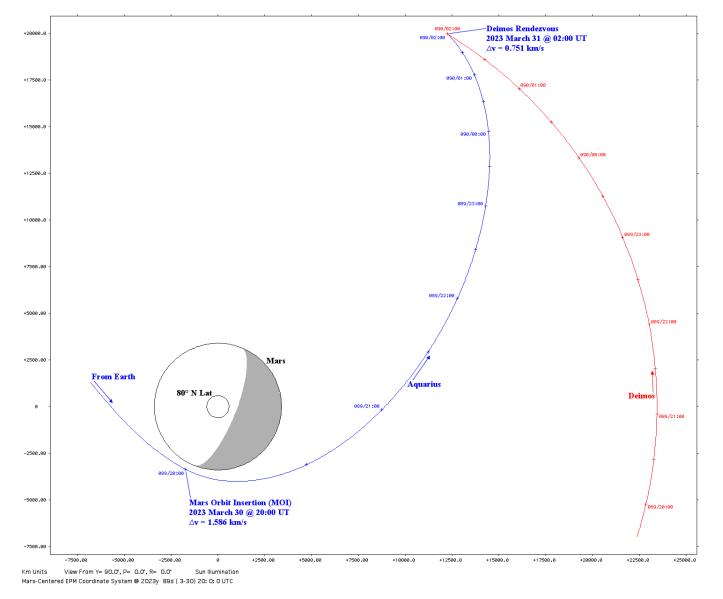

Aquarius Component	Mass At Departure (kg)
Crew of 3 and miscellaneous gear in Hab & DAC	9820
Short-arm centrifuge	1700
DAC structure	26,461
HAB structure	36,457
Crew open-loop consumables, including water (m_{LS})	24,953 ²
Nuclear thermal propulsion (NTP) systems	41,700
Nominally usable NTP water propellant (m_P)	146,343
Attitude control propellant (m_{RCS})	13,903
Nominally unusable water dedicated to Hab shielding (m_S)	23,042 ³
Water tank structure holding m_P and $m_S(m_T)$	32,440
Total of all components (<i>m</i> _{TOT})	356,819 ⁴

² This component budgets 29.26 kg per capita per day to include water for hydration/hygiene, oxygen, dehydrated food, atmospheric losses, and systems maintenance.

³ Water mass required to provide a jacket of RP5 shielding for the Hab, a cylinder 2.3 m in radius and 12.2 m in length, is 87,053 kg (m_J). Nominally, some of this mass is consumed as propellant by NTP systems (but only during destination arrival).

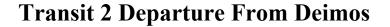
⁴ International Space Station (ISS) mass as of 11 January 2017 is 422,200 kg.

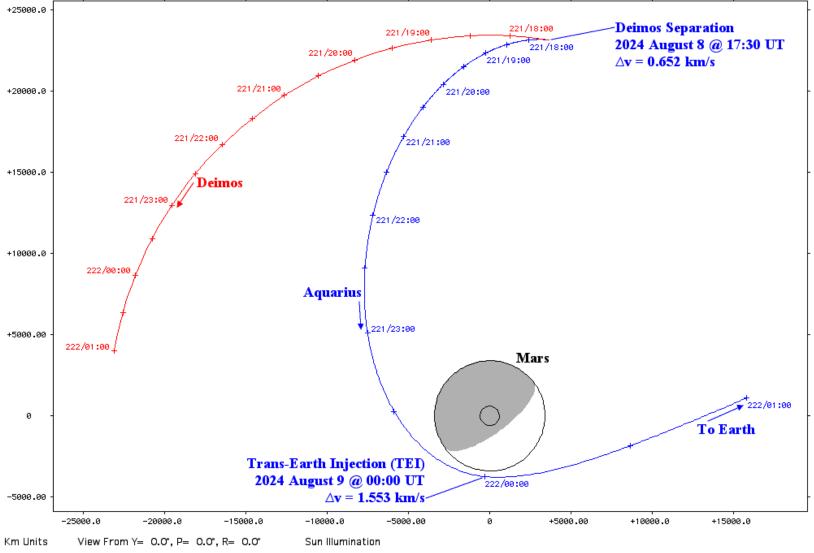

Scale m_P , m_{RCS} , m_S , and m_T According To NTP I_{SP}


Transit 1: Post Assembly Departure From Elliptical Earth Parking Orbit (EEPO); Arrival At Deimos (m_P values are post-burn)

Event	Date	T (days)	⊿v (km/s)	<i>mls</i> (kg)	m_P (kg)	<i>тот</i> (kg)	$m_P + m_S$ - m_J (kg)
Perigee Lowering	08 Sep 2022	0	0.242	24,953	136,692	347,168	+72,680
TMI	09 Sep 2022	1	1.116	24,855	95,468	305,846	+31,456
MOI	30 Mar 2023	204	1.586	4837	48,456	238,816	-15,555
Deimos Rendz.	31 Mar 2023	204	0.751	4837	28,976	219,336	-35,036

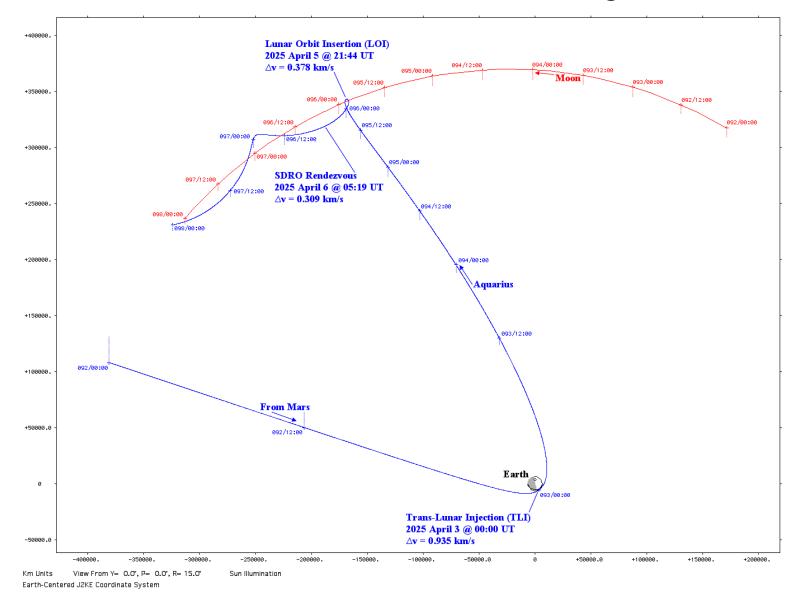
Transit 1 Arrival At Deimos

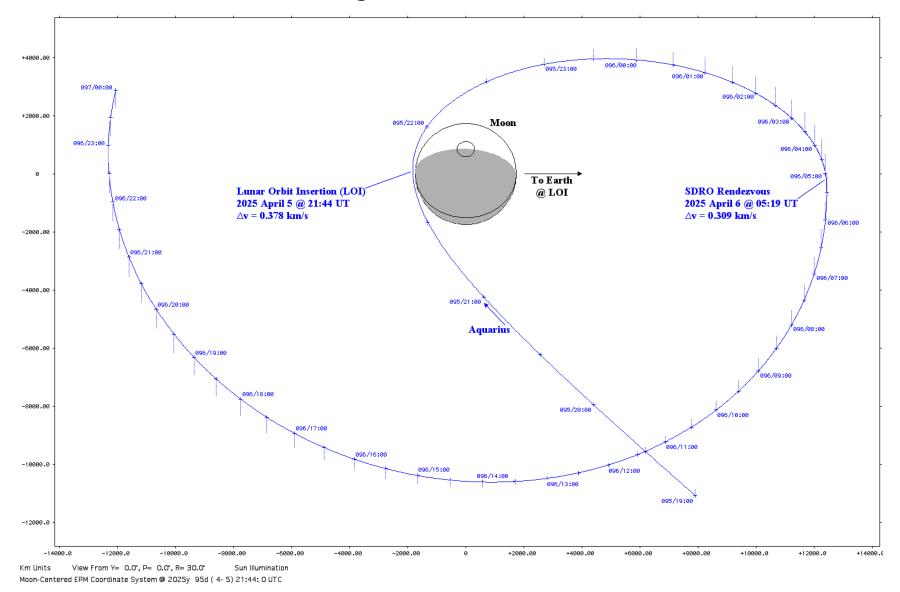



Transit 2: Departure From Deimos; Arrival At Selenocentric Distant Retrograde Orbit (SDRO) Garage (m_P values are post-burn)

Event	Date	T (days)	⊿v (km/s)	<i>mls</i> (kg)	m_P (kg)	<i>тот</i> (kg)	$m_P + m_S$ - m_J (kg)
Deimos Sep.	08 Aug 2024	0	0.652	24,953	120,934	331,410	+56,922
TEI ⁵	09 Aug 2024	0	1.553	24,953	67,462	277,938	+34506
TLI	03 Apr 2025	237	0.935	1583	41,873	228,978	-22,138
LOI	05 Apr 2025	240	0.378	1287	32,286	219,095	-31,726
SDRO Rendz.	06 Apr 2025	240	0.309	1287	24,748	211,558	-39,264

⁵ This TEI consumes more m_P than any other Transit 1/2/3 event, 120,934 - 67,462 = 53,472 kg. At 37.8 kg/s m_P flow rate, TEI burn duration is 23.6 min.

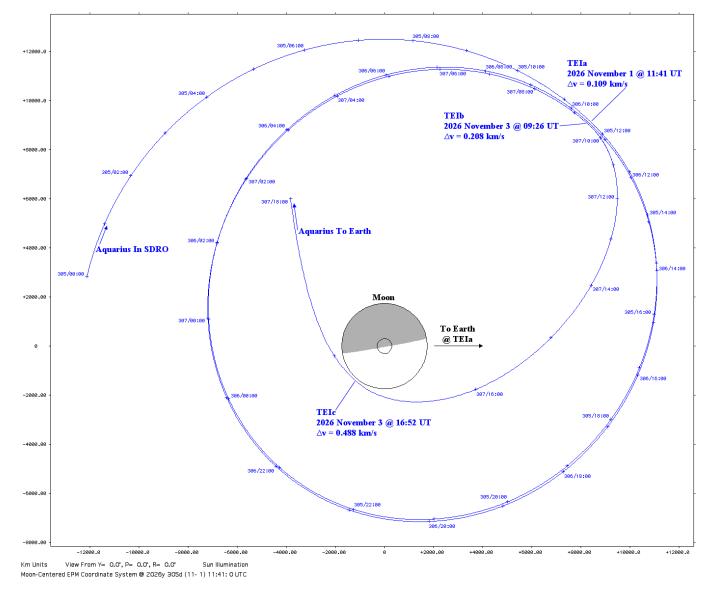

⁶ This is the slimmest Hab radiation shielding margin with respect to RP5 and m_J , +3450 / 87,053 = +4%, among all Transit 1/2/3 departures

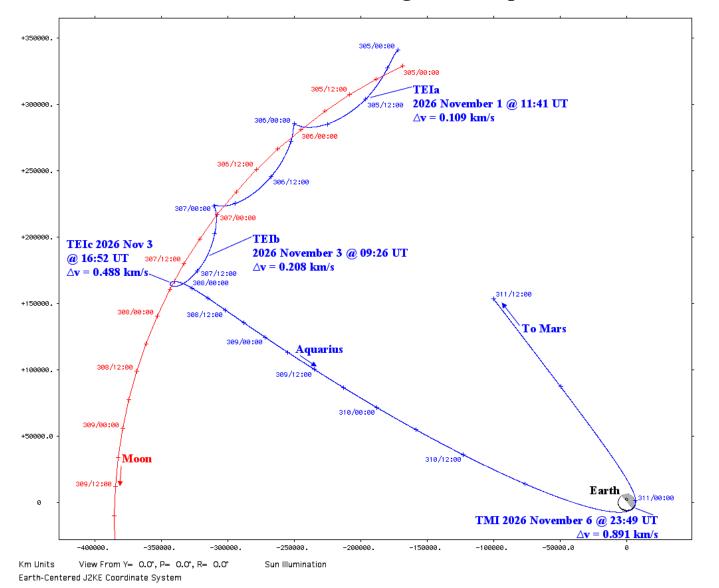


Mars-Centered EPM Coordinate System @ 2024y 222d (8- 9) 0: 0: 0 UTC

Transit 2 Arrival At Earth And Transfer To SDRO Garage

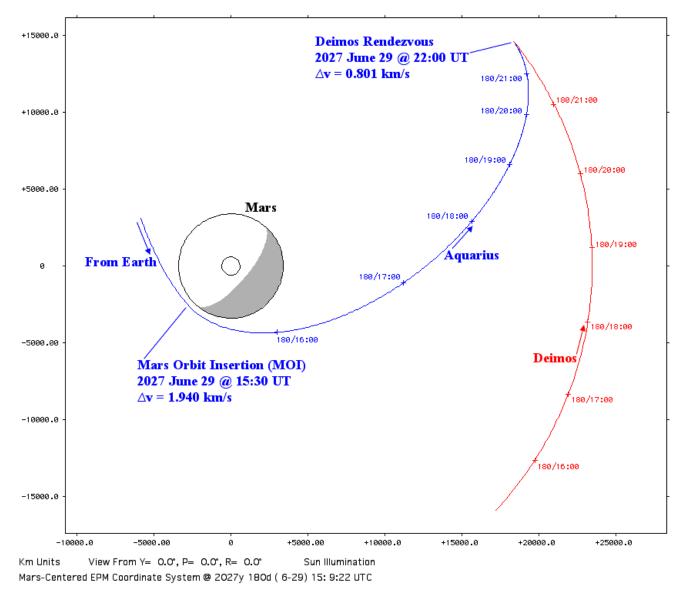
Transit 2 Arrival At SDRO Garage


Transit 3: Departure From SDRO Garage; Arrival At Deimos (*m_P* values are postburn)


Event	Date	T (days)	⊿v (km/s)	<i>mLs</i> (kg)	m_P (kg)	<i>тот</i> (kg)	$m_P + m_S$ - m_J (kg)
TEIa	01 Nov 2026	0	0.109	24,953	141,963	352,439	+77,952
TEIb	03 Nov 2026	2	0.208	24,756	133,759	344,038	+69,748
TEIc	03 Nov 2026	3	0.488	24,657	115,258	325,439	+51,247
TMI	06 Nov 2026	6	0.891	24,362	84,037	293,922	+20,026
MOI	29 Jun 2027	241	1.940	1188	30,612	217,323	-33,400
Deimos Rendz.	29 Jun 2027	241	0.801	1188 ⁷	11,757 ⁸	198,468	-52,254

⁷ This is the slimmest m_{LS} margin among all three transits and would deplete only if daily crew consumption increased an average of 5% throughout Transit 3.

⁸ This is the slimmest m_P margin (8% of capacity by mass) among all three transits and equates to a surplus *Aquarius* Δv capability of 0.539 km/s at arrival. A 31° inclination with respect to the martian equator (the orbit plane of Deimos is inclined to the martian equator by 1.8°) during Mars terminal approach results in MOI Δv larger than any other Transit 1/2/3 event.



Transit 3 Transfer From SDRO Garage And Departure From Earth

Transit 3 Arrival At Deimos

Parting Thoughts

- Standard iHSF architecture disclaimers apply: *Aquarius* is based on speculation, there are undoubtedly other routes to routine iHSF capability, and your mileage may vary
- Shielding the Hab to RP5 is an educated guess, but iHSF radiation exposure standards are in a state of flux with the risk to humans only partially understood (ISS has ≤ RP2)
- Shielding mass available for propulsion during arrival is the mark of a reusable iHSF transport
- If airliners could not refuel at their destinations, trans-Atlantic air travel would be about as routine as iHSF is now: caching supplies near an interplanetary destination is essential
- Aquarius requires a means of heating ~ 40 kg/s of water to $> 3000^{\circ}$ C for propulsion
 - Water is easy to store/transport, also serves as crew radiation shielding, and is abundant throughout the solar system
 - Is there a better water heating method than nuclear fission?
 - If we can operate fission power plants on Earth, even near fault lines where potential for mishaps is high, it should be easy to justify their routine use in iHSF
- "The Devil is in the details, but so is salvation." -Admiral Hyman G. Rickover, father of the nuclear navy