

Uncertainty Quantification of Metal Structures

David Rothstein

Northrop Grumman Space Systems

Wasatch Aerospace & Systems Engineering Conference

Copyright © 2021 by Northrop Grumman. Published by the American Institute of Aeronautics and Astronautics, Inc. and the International Council on Systems Engineering, Inc. with permission

American Institute of Aeronautics and Astronautics – International Council on Systems Engineering

Standard Metal Structure Analysis

- Conservative approach
- Bound aleatory uncertainty
 - Uncertainty due to inherent variation or randomness
 - "Known unknowns"
- Apply a safety factor (SF) to account for epistemic uncertainty
 - Uncertainty due to lack of knowledge
 - "Unknown unknowns"
- Margin calculation for a failure mode:

$$Margin = \frac{Allowable}{SF(Model Result)} - 1$$

Uncertainty Quantification (UQ)

- Assess the uncertainty of aleatory and epistemic variables
- Creates a reliability based SF
- Metals do not have as much inherent uncertainty as other disciplines in aerospace engineering
- Will discuss variables and process for performing UQ analysis on a metal structure
 - Can result in significant mass saving for primary structures

UQ Variables

- Loads
- Material properties
- Material temperature
- Geometry dimensions
- Finite element (FE) analysis model boundary conditions
- Any analysis input with a probability distribution function (PDF)

UQ Process Overview

Example UQ: Step 1

- Hypothetical metal structure UQ analysis to determine FS
 - Assuming goal FS of 1.4
- Step 1: Variables
- Two independent variables chosen
 - Axial load applied to structure
 - A-basis stress-strain curve of metal material
- Normal distribution PDF selected for each variable

Example UQ: Steps 2 & 3

- Step 2: Structural analysis performed at minimum, nominal, and maximum variables
 - Upper and lower 3σ values for max/min
- Step 3: Report FS output from FE model

		Load		
		Min	Nom	Max
Stress-Strain Curve	Min A-basis	1.40	1.52	1.62
	Mean A-basis	1.57	1.70	1.83
	Max A-basis	1.70	1.83	1.92

Example UQ: Step 4

- Step 4: Closed form equation (surrogate model) created from FS data
- Stepwise regression method was used for example
 - Good fit, R² = 99.6%
- Surrogate model for UQ:

 $FS = 1.70 + 0.03889 * Axial \ Load + 0.05056 * Stress Strain - 0.003889 * Stress Strain^2$

Example UQ: Steps 5 & 6

- Step 5: Monte Carlo simulated 100,000 times
- Step 6: Model form error was assumed to be negligible for example
- Monte Carlo results:
 - Lower 3σ FS = 1.48
 - Lowest FS = 1.37
 - 1 in 25,000 chance FS<1.4

CONFERENCE

American Institute of Aeronautics and Astronautics – International Council on Systems Engineering

Conclusion

- UQ is not a one size fits all solution
- Most useful on large, primary structures
 - For aerospace applications, mass-savings is an important design driver
- Structural testing is critical
 - Need to fully understand failure modes of the structure
 - Allows correlation of test data to FE model
 - Model form error should be used in Monte Carlo simulation

Wasatch Aerospace Systems Engineering CONFERENCE

American Institute of Aeronautics and Astronautics – International Council on Systems Engineering